Ctip1 Regulates the Balance between Specification of Distinct Projection Neuron Subtypes in Deep Cortical Layers.
نویسندگان
چکیده
The molecular linkage between neocortical projection neuron subtype and area development, which enables the establishment of functional areas by projection neuron populations appropriate for specific sensory and motor functions, is poorly understood. Here, we report that Ctip1 controls precision of neocortical development by regulating subtype identity in deep-layer projection neurons. Ctip1 is expressed by postmitotic callosal and corticothalamic projection neurons but is excluded over embryonic development from corticospinal motor neurons, which instead express its close relative, Ctip2. Loss of Ctip1 function results in a striking bias in favor of subcerebral projection neuron development in sensory cortex at the expense of corticothalamic and deep-layer callosal development, while misexpression of Ctip1 in vivo represses subcerebral gene expression and projections. As we report in a paired paper, Ctip1 also controls acquisition of sensory area identity. Therefore, Ctip1 couples subtype and area specification, enabling specific functional areas to organize precise ratios of appropriate output projections.
منابع مشابه
The Specification of Cortical Subcerebral Projection Neurons Depends on the Direct Repression of TBR1 by CTIP1/BCL11a.
The acquisition of distinct neuronal fates is fundamental for the function of the cerebral cortex. We find that the development of subcerebral projections from layer 5 neurons in the mouse neocortex depends on the high levels of expression of the transcription factor CTIP1; CTIP1 is coexpressed with CTIP2 in neurons that project to subcerebral targets and with SATB2 in those that project to the...
متن کاملHierarchical Organization of Neocortical Neuron Types
2 Abstract The neocortex consists of many diverse neuron populations distributed across cortical layers having specialized connectivity and projection patterns. Glutamatergic pyramidal cells, which are cortical projection neurons, reside in all layers except layer 1, while GABAergic nonpyramidal cells are ubiquitous throughout all cortical layers. These broad classes of excitatory and inhibitor...
متن کاملLmo4 and Clim1 progressively delineate cortical projection neuron subtypes during development.
Molecular controls over the development of the exceptional neuronal subtype diversity of the cerebral cortex are now beginning to be identified. The initial subtype fate decision early in the life of a neuron, and the malleability of this fate when the balance of key postmitotic signals is modified, reveals not only that a neuron is deterministically set on a general developmental path at its b...
متن کاملFezl Is Required for the Birth and Specification of Corticospinal Motor Neurons
The molecular mechanisms controlling the differentiation of neural progenitors into distinct subtypes of neurons during neocortical development are unknown. Here, we report that Fezl is required for the specification of corticospinal motor neurons and other subcerebral projection neurons, which are absent from Fezl null mutant neocortex. There is neither an increase in cell death in Fezl(-/-) c...
متن کاملCtip1 Controls Acquisition of Sensory Area Identity and Establishment of Sensory Input Fields in the Developing Neocortex
While transcriptional controls over the size and relative position of cortical areas have been identified, less is known about regulators that direct acquisition of area-specific characteristics. Here, we report that the transcription factor Ctip1 functions in primary sensory areas to repress motor and activate sensory programs of gene expression, enabling establishment of sharp molecular bound...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Cell reports
دوره 15 5 شماره
صفحات -
تاریخ انتشار 2016